计算机软件及计算机应用论文_基于新分区策略的

10-23

文章摘要:人体动作识别是智能监控、人机交互、机器人等领域的一项重要技术,基于人体骨架序列的动作识别方法在面对复杂背景以及人体尺度、视角和运动速度等变化时具有先天优势。时空图卷积神经网络模型(ST-GCN)在人体行为识别中具有卓越的识别性能,针对ST-GCN网络模型中的分区策略只关注局部动作的问题,本文设计了一种新的分区策略,通过关联根节点与更远节点,加强身体各部分信息联系和局部运动之间的联系,将根节点的相邻区域划分为根节点本身、向心群、远向心群、离心群和远离心群等5个区域,同时为各区域赋予不同的权重,提升了模型对整体动作的感知能力。最后,分别在公开数据集和真实场景下进行实验测试,实验结果表明,在大规模数据集Kinetics-skeleton上获得了31.1%的Top-1分类准确率,相比原模型提升了0.4%;在NTU-RGB+D的两个子数据集上分别获得了83.7%和91.6%的Top-1性能指标,相比原模型提升了2.3%和3.3%;在真实场景下,所提模型对动作变化明显且区别大的动作如俯卧撑和慢跑识别率高,对局部运动和动作变化相近的动作如鼓掌和摇头识别率偏低,尚有进一步提高的空间。

文章关键词:

项目基金: